If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+52x-7300=0
a = 1; b = 52; c = -7300;
Δ = b2-4ac
Δ = 522-4·1·(-7300)
Δ = 31904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{31904}=\sqrt{16*1994}=\sqrt{16}*\sqrt{1994}=4\sqrt{1994}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52)-4\sqrt{1994}}{2*1}=\frac{-52-4\sqrt{1994}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52)+4\sqrt{1994}}{2*1}=\frac{-52+4\sqrt{1994}}{2} $
| 30*5+12(10+y)/15y=15 | | 30x+12(15−x)15=1830x+12(15−x)15=18 | | 2•(20x+1)=4x–3 | | 30x+12(15−x)/15=1830x+12(15−x)15=18 | | -5x^2+0x+3=0 | | 5•(x–15)=6x+19 | | 8x+18=4x+7 | | X(1-3x)=8x-1 | | 45=x+x/2 | | n/8-56+24=32 | | 5x-157=2x | | 2x(7-x)=40 | | n^8-56+24=32 | | 180-5x=8x-2x180 | | 7=(4-x)-8 | | 6t2+5t+1=0 | | 15x-x=2x+60 | | n*6-25+4=15 | | 4(n=2)=5(n+1) | | 9/13=x/9 | | 9x-45=-6x | | -8+2x=-16÷8x | | 9x-45=-9x | | 3x+13=x+8 | | -9x-45=-9x | | 2p=31+7 | | 9x-15=-9x | | -5/9=x-2 | | 2s+5=87 | | 5x+5=26-2x | | p=31 | | v+1/2=-4/5 |